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Abstract

Thisinvestigation was undertaken as a part of alarger effort to determine the
implications of using coherent turbulent structures or turbules to calculate
acoustic scattering from turbulent media, a process that has been suggested
as a possible non-line-of-sight means of detecting enemy assets on the
battlefield. I present an analytical solution to a correlate of the incompress-
ible Navier-Stokes equation. The correlate equation is for the enstrophy, the
square of the vorticity. The solution is an expression for the time history of
the enstrophy for a particular choice of the initial velocity distribution.
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1. Introduction

This investigation was undertaken as part of a larger effort to determine
the implications of using coherent turbulent structures to calculate acoustic
scattering from turbulent media, a process that has been suggested as a
possible non-line-of-sight means for detecting enemy assets on the battle-
field. I have published a number of papers on the scattering of acoustic sig-
nals from atmospheric turbulence on the battlefield, as well as a new way
of modeling turbulence [1]. My new modeling method is called the
Turbule Ensemble Model (TEM). The TEM method consists of representing
the turbulence region as a collection of turbules (eddies) of prescribed sizes
and random locations. A turbule is an isolated inhomogeneity in either the
temperature or the velocity. Methods for determining the parameter values
required to complete the calculation of the signal scattered into a shadow
zone have been reported elsewhere [1}.

As methods of determining the parameter values have improved, reexami-
nation of assumptions in light of theory/experiment comparisons has pro-
ceeded apace. One of these assumptions is that Taylor’s frozen turbulence
hypothesis holds. Previous work [1] indicates that an interplay of the scat-
tering geometry and the location of the shadow zone boundary determines
the turbule sizes that must be considered in any particular scenario. For
example, a high boundary reduces the contribution of large turbules
because the scattering pattern of large turbules is concentrated in the for-
ward direction. This means that the scattered signal passes above the
detector, which is usually located near the ground. The persistence of
smaller turbules is shorter than that of larger turbules, as can be seen from
dimensional analysis of the relevant flow parameters [2]. As is characteris-
tic of dimensional analysis results, the constant multiplier to be used with
the rate so determined is unknown. Since the rate constant is usually
included in an exponent, the effect of not knowing the multiplier more pre-
cisely can give improper indications as to the source of any discrepancy
between predicted and measured results. As the scenario model is honed
ever nearer to the correct representation of the experiment, improved accu-
racy in parameter estimation becomes more important.

The original purpose of the work reported here was to come up with a bet-
ter estimate of the time interval over which Taylor’s frozen turbulence
hypothesis may be relied upon. As detailed in section 6, this objective was
not reached, in a practical sense, because the analysis is for an isolated
velocity distribution. The mathematical development of the investigation
is reported here because it may be useful in research on decay times and
perturbation effects as the Reynolds number transitions from the laminar
to the turbulent regime. A short synopsis of the mathematical development
follows.

Since the interest at this time is on the evolution of a velocity turbule, the
Navier-Stokes (N-S) equation is the logical place to begin such an investi-
gation, because the equation relates the rate of change of fluid velocity to
other flow quantities. The convective acceleration portion of the N-S




equation (the velocity equation) can be transformed by a vector identity
into the cross product of the velocity and the vorticity, plus the gradient of
the square of the velocity. When the curl of the resulting equation is
performed (assuming constant density and viscosity), all gradient terms
drop out, leaving a second equation (the vorticity equation), which
comprises two terms in the vorticity and one other term. The latter term is
the curl of the velocity-vorticity cross product. For a particular initial
velocity distribution, namely the cross product of the angular velocity and
the position vector multiplied by a Gaussian envelop function, the latter
term turns out to be parallel to the velocity. Since the vorticity associated
with this velocity distribution is perpendicular to the velocity, the dot
product of the vorticity with the latter term is initially zero. Thus, a third
equation (the enstrophy equation) formed by the dot product of the vortic-
ity and the vorticity equation has the interesting property that the cross-
product term is initially zero. The term enstrophy is defined elsewhere [3]
as the time average of the squared vorticity. Enstrophy as used here refers
to the square of the vorticity. In a further step in the analysis, a trial time-
dependent enstrophy distribution expression was derived by solving the
enstrophy equation, assuming the cross product term is zero. A surprising
result is that the time-dependent vorticity and velocity distributions
inferred from the time-dependent enstrophy distribution produced a
cross-product term in the enstrophy equation that was identically zero for
all time. These velocity /vorticity expressions are not solutions to the veloc-
ity equation or to the vorticity equation. The expression for the time his-
tory of the enstrophy is unusual to the extent that the standard definition
of the time constant is no longer appropriate.

The organization of the remainder of the report is as follows: In section 2,
transformation of the N-S velocity equation into an equation for the vortic-
ity is outlined. Section 3 contains an analysis of the characteristics of the
N-S convective derivative term (as transformed into vorticity) for the par-
ticular initial velocity distribution that I have chosen. I show that the dot
product of the convective derivative term and the vorticity is zero and,
therefore, the dot product of the vorticity with the vorticity equation elimi-
nates this term from immediate consideration. Such a dot product without
the convective derivative term produces a differential equation in the
enstrophy only. In section 4, Fourier transform (FT) and Laplace transform
(LT) theories are used to solve for the time-dependent enstrophy field. In
section 5, time-dependent velocity and vorticity fields are inferred from
the enstrophy field and inserted into the original enstrophy equation. This
step confirms that the inferred time-dependent fields, like the initial fields,
produce a zero convective derivative term, and that time-derivative and
Laplacian terms counterpoise each other so that the inferred fields are a
consistent solution to the enstrophy equation. Section 6 contains calculated
results and recommendations for future work. Section 7 is a brief sum-
mary. Appendix A is a short review of applicable FT theory and notation.
Appendix B contains details of the equation-solution procedure. Appendix
C contains details of the confirmation process. Appendix D contains proof
that the time-dependent velocity field inferred in section 5 is not a solution
to the N-S equation.




2. The Navier-Stokes Equation for Vorticity

The N-S equation is given [4] as the following:

e - (oo

Following the reference, this equation for the velocity u and the pressure p
may be converted into an expression in which the gradient terms are
absent. Using the following standard vector formulas [5] given in the first
line of equation (2), the second term of equation (1) may be transformed as

1/2)Vu? = ux(Vxu) +(u-Viu
ou = —(—1—)V;)—(1/2)Vu2 +ux(Vxu) +
rexs p
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If the density p and the viscosity coefficients 17 and ¢ are constant, taking

the curl of both sides results in the following relation:

Vx(VU) = 0; if U is a scalar function

d = Vxu
od

— = Vx(uxd) +vVvid.
o7
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The first expression in equation (3) is a standard vector formula [5]. The
second expression defines the vorticity d. The kinematic viscosity coeffi-
cient is v = n/p, where 7 is the dynamic viscosity coefficient. In equation
(3) the functions (u, d) are functions of the space coordinates y;, (i=1,23),
whose units are typically the meter, and the time 7, whose unit is typically
the second. As noted in the introduction, the interest of this report is in the
dynamics of an atmospheric velocity turbule. A velocity turbule has a char-
acteristic linear dimension a and a characteristic angular velocity magni-
tude Q. These parameters are conveniently used to convert equation (3) to
the unitless coordinates x, the unitless time ¢, the unitless velocity v, and
the unitless vorticity ¢, according to the relations in the following equation:

% = V,x(vxc) + KVic,
ot
where x; = y]./a; t = Qot; v = u/(Qa);
0
V. =aV,; K =v/(@Qy) o = pe

c = d/Qo;
Y

=§-;,

d;

The notation used above is summarized as i = 1, 2, 3 = subscript index
(repeated subscripts imply summation), x; = space variables, %; = space
A

unit vectors, and x = space vector = X;x;.




The parameter K is the reciprocal of the typical Reynolds number. The
symbol K is used rather than the symbol R,! for writing economy. The
subscript x will be dropped from the V operator in subsequent develop-
ments and, where appropriate, the shorthand notation for partial deriva-
tives indicated in the last line of equation (4) will be used for the same
reason.

3. The Nature of the N-S Equation’s Second Term

The second term referred to in the N-S equation is the curl of the cross
product of v and ¢ in equation (4) for which the symbol s(x,t) is reserved.
The class of solutions sought is for rotationally symmetric velocity distri-
butions. A member of this class is the distribution defined in the equation

u(y) = [Qxylexpl-(y;/a)"] - (5)

In equation (5), Q is an angular velocity vector and 4 is the characteristic
turbule size. No loss of generality is suffered if u(x) is further particular-
ized by choosing Q to be aligned with the y3 axis as follows:
Q = 7,Q 6

wo(y) =Qol-7,; + To,]expl-(y,/aYl. ©

Converting to unitless quantities using equation (4) results in the following
velocity distribution:
x =y/a;, vy = ug/(a8)

Uo(x)

The corresponding vorticity function follows from equations (3) and (4):

@)

(XX, + X, %) exp[—(x; )2] .

Co(x) = 20X x;X3 + XX X3 +X3(1 - x3 - x%)]exp[-—(x,-f] . (8)

The dot product of the velocity and vorticity is seen to be zero, so the two
are perpendicular.

The crossproduct of the velocity and the vorticity is
UoxCo = 251 -2 = 23 +Fax2(1 =2 — x3) = 23(xf + 2D xslexpl-2(xi)°] - 9)
Take the curl of equation (9) to obtain the second term, which is
so = 4l51x2 — Baxlxsexpl-2(xi)] - (10)

The second term s is seen to be oppositely directed to vg. This means that
the dot product of the vorticity and sy is zero. The equation to be solved is,
therefore, the following:

%a,c2 = ¢-Vx(vxc) +Kc-Vic . (11)

This equation is referred to as the transport equation for instantaneous
enstrophy [6] and was used for a different purpose there. When (v, co) are
substituted in equation (4), the second term is eliminated. The procedure




to be followed, then, is to solve equation (11) without the v cross ¢ term for
the initial vorticity distribution of equation (8), and then substitute the
result in equation (11), including the v cross ¢ term, to confirm that the
answer leads to a zero second term for all time, and that the other terms
combine to make equation (11) true for all time.

4. Transformation of the N-S Equation

FT theory will be used in section 4 to solve equation (11), less the v cross
term, acknowledging in the process that this term is the very essence of
turbulence. The applicable theory is outlined in appendix A, along with
the notation employed, and the definition of the FT of a function.

The convention used for field functions is: lower-cased letters are in the
space domain and upper-cased letters are in the FT or wavenumber
domain. Additionally, (v, V) = velocity field function (vectors), and (¢, C) =
vorticity field function (vectors).

Additional notation is g; = wavenumber variables, z’q\i = wavenumber unit
A
vectors, and g = wavenumber vector = 4;4;.

A general property of the velocity distributions associated with incom-
pressible flow is that the divergence is zero, as in

Vv = 0ivi = 0. (12)

It is easy to verify by direct application of the divergence operator that the
divergence of the vorticity is also zero, as in

Voc = 9ici = 0. (13)
The FT of equations (12) and (13) give the following result:

q,Vi = 0

9.Ci = 0 (14)

The FT of the velocity, vorticity, and second-term functions from equations
(7), (8), and (10) are as follows:
Volq) = jz¥2-6,4, + G,q)expl-q;/41/2
Col@) = m*/H-8,018, — §,9,9, + G:19) + mllexpl-4;/41/2 (45
So(q) = (x°/2)"* =40, + 4,0);expl-4;/81/8.

In the FT domain, the equations giving the vorticity in terms of the velocity
are as follows:

C1 = j(4,V3 — 45V2)
Cz = j(§;,V1 — 4,V3) (16)
Cs = j(4,V2 - 9,V1).




A useful relation is the sum of the above three components:

Ci+ Co + C3 = j[(q3 - qz)Vl + (ql - q3)V2 + (qz - q])V3] . (17)

Combining equations (14), (16), and (17) gives the following results for the
V;in terms of the C;:

S 1o %Q)}

L q;
Vo = —j N ”2 qlca)}

L qi (18)
v = -j G B0 ;2 %Cl)}.

The results of equation (18) allow substitution of vorticity components for
velocity components.

Rewriting equation (11) using the tensor notation of the fourth line in
equation (4) and dropping the cross-product term results in

KCj(x/t)aiij(xIt)
2K cj(x,t)df cj(x, 1)

Cj(x/t)ath(X,t)

arle; (6 1 (19

Also indicated in equation (19) is the fact that the vorticity is a function of
time. A useful modification of equation (19) is obtained by consideration of
the second partial of the square of some function, such as f(x), as in

3. {0:f P} = 9. 2f()af(x)} = 2f(x)32f(x) + 2[3. f(x)F
(1/2)f) T - [B: ()

The last line of equation (19) is rewritten for the first component using the
last line of equation (20), as in

Rf()F

F()32f() (20)

ala(xt? = KidflaxhP - 2[dica(x D) - (21)

Similar expressions may be written for the other components of c(x,). The
next step is to obtain the FT of the above expression through the equation

Btif ]: T(dq'fcl(q',t)cl(q - 4.t = —qu] T T(dq')3c1(q’,t)cl(q - gt +

-0 —00 -0 —e0 —00 —00

2k [ [ [@gl@)a, - 9ica’ nC:i@ - ')
e (22)

[ | [@qyia + Ka - 2K@)g, - 4103004 - q') = 0.

—00 =—00 =—00




Equation (22) is solved in appendix B. The symbol e(x,t) will be used for
the enstrophy in

e(x,t) = [¢;j(x1)F

Fext) = Eah = | | [@rycanca-qn. &

-0 ~00 =00

From appendix B, the IFT of the last expression in equation (23) may now
be written as

e t) = [4exp[(—42Lx)i27 /(4L)]

jﬁxlxs)? + (x2x3)? + 4L - x} - x3)7 . (24)

Equation (24) is the most significant and novel result in this report. Nota-
tion has been simplified by the substitution L = 1/4 + Kt. As an elementary
check of mathematical manipulations, it is easy to see from the above that
the initial (¢ = 0) enstrophy distribution is indeed the square of co(x) from
equation (8).

5. Confirmation of Results

The purpose of this section is to confirm that the results derived in section
4 are, indeed, a solution of the transport equation for instantaneous
enstrophy (eq (11)). The original differential equation (eq (4)) is repeated
here:

9;c = Vx(vxc) + KV2c . (25)

Equation (25) is actually three equations, wherein the operations are on the
components of the vorficity. Again using the symbol s for the second term,
the three equations can be represented as one equation in tensor notation,
using the coordinate unit vectors

dicjxj = sjxj + K(a,‘)zcj'fcj . (26)

The dot product was applied to this vector equation, resulting in equation
(11), which is reproduced here:

cjoicj = cjsj + KCj(a,')ZCj . (27)

It is also necessary to verify that our solution satisfies the divergence equa-
tions (12) and (13). To perform this verification, the solution will consist of
trial expressions, which will be substituted into equation (12), (13), and
(27). Trial functions will be designated by bold letters.

The trial vorticity function is contained in the components of equation (24),
or

2expl-x7/(4L)]
(4Ly’?
1/4 + Kt .

)[J?xxwfs + Foxaxs + %3(4L - xf - 23)]
(28)

h
n




v
V xv
2A/(4L)

v

Note that the divergence of the above is zero as can be seen by summing
the three components in equation (29):

2expl-x2/(4L)]
e = 9X$4L§7/2 [1- 2xf/(41)]x3
2exp[-x?/(4L)]
922 = j [1- 2x3/(4D)]xs
(4L)7/2 (29)
— 5?2
dscs = ze"‘(’i;)“; 78D 241 - 2 - xws/AD)]

There is a direct link between the trial vorticity (eq (28)) and the trial veloc-
ity: find the FT of ¢; apply equation (18) to find the FT of v; and find the
inverse Fourier transform (IFT) of the result. This has not yet been done.
An alternate route is to propose a functional form in analogy with equa-
tions (7) and (28), including a multiplicative factor; find the curl of that
form; and derive the specific form of the factor to make the result equiva-
lent to equation (28). The proposed form is in equation (30), where A is the
ab initio unknown factor, as in

A(-#1x2 + Rox1)expl-x?/(4L)]
[2A/(AD])[#1x1x5 + R2xax3 + 23(4L — xf — x3)lexp[-xf/(4L)]
2/(4LY’?;, A = 1/(4L)*/? (30)
[1/(4L)/?)(- 2122 + Faxpexpl-x{/(4L)] .
It is obvious that the divergence of v is zero because of the opposite sign of

the two terms, and the fact that the derivatives of the exponential factor
will make their magnitudes the same.

To record the verification process cogently, set up the A, function, compris-
ing all three separately identified terms of equation (27), shifted to the left-
hand side as in

Ac = ac — B - Ke,

o = €joiC;

B. = ¢js;j (31
¢. = ;)¢ -

Showing A, is zero will prove that the (¢, v) functions from equations (28)
and (30) are a consistent solution set for equation (27). Expansion and sim-
plification of functions (e, B¢ @) are done in appendix C. The results are
that B = 0 and o = K ¢. Therefore, the conclusion is that (¢, v) are a con-
sistent solution set for equation (27).




6. Discussion of Results

Displaying the nature of the enstrophy field defined by equation (24) is
somewhat of a challenge because of the violent variability with respect to
time. The size/time scales are incorporated in the constant K, so that any
curves in terms of the variables (x, t/K) are universal. If t is 1/(4K), the
enstrophy at the origin (x = 0) is already 1/32 of the value for { = 0. Ordi-
narily, a time constant is defined when some energy like quantity has de-
clined to one-half of its starting value. This would translate into the ¢ = 1/
(4K) if the numerator/denominator combination was L-1. The fact that the
numerator /denominator combination changes when x # 0 further compli-
cates the search for a simple describer for the time history. If the size is de-
fined to be the radius of the circle in the (x7, xp) plane, where the exponent
of envelope function is -2, then the size a(t) = (4L)1/2. The meaning of this
is that the turbule gets larger with time, a rather novel concept. This appar-
ent increase in size is masked by the 5th power fall off of the central maxi-
mum of the distribution. From an acoustic scattering point of view, the
scattering cross section declines with time, but the differential scattering
cross section becomes more peaked in the forward direction. The
enstrophy is zero at certain points in the (x] — x) plane reflecting the fact
that the vorticity changes sign for this particular starting velocity distribu-
tion as the point of interest recedes from the axis.

To aid intuitive understanding, the dimensionless fields and variables will
be discarded and the pertinent equations will be as follows:

2Qoa expl-y2/(a* + 4v1)] ) . .
- (@ + vty /? v,y + Y,Y,05 +

d(}//T) = [

7, + 47 - 5 - )l
Qoa’expl-y:/(a® + 4v1)]
(@ + 4vr)*’?

u(y,7) = J['.’;lyz + 1,41

4Q3aYexpl-2y2 /(> + 4v1)]
(a* + 4vrY

e(y,7) = jl(yms)z + (Y, ¥5) +

(32)
(@ + 4vt - yi - ¥3)]

pQ3alexpl-2y7/(a® + 4vr)]
2(g? + 4vry

w(y,?) = J[yf + y3l.

Perhaps the best way to gain some numerical idea as to the variations of
the turbule enstrophy is to consider the total of this quantity. As a matter of
convenience this is done in the following equation, where the volume inte-
gral of the enstrophy is calculated as:

0 00 oo 5723/203 410
€(1) = J- I j(dy)3e(y,r) = [4\/5(122 N 4‘?,[)7/2)

—00 =00 —00

(33)




The new function w(y,7) in equation (32) is the kinetic energy concentra-
tion. The total kinetic energy is calculated from the following expression:

I , B 722030 p
W(r) = __‘; __‘; _J;(dy) w(y,T) = (8«/5(a2 : 4‘,1)5/2)

34
W) _ (ALY, (34)
W(0)

From the last expression in equation (34), let t1 /» be that time for which the
ratio is 1/2 (a condition that occurs when Kt /2 = (22/5-1)/4 = 0.0798770).
The intent is now to investigate the state for seven different turbule sizes.
The relevant data is collected in table 1.

The sizes are from the ensemble reported previously [1]. In this ensemble,
the characteristic size of the largest-sized turbule was a; = 10 m. The maxi-
mum velocity in the largest turbule was approximately 1/100 of the speed
of sound or v; = 3.44 m - s1. The turbule size ratio was a,,/a,1 = 0.827787.
For a velocity structure constant of 0.1111 m#/3 - s72, the turbule spacing
parameter was ¢ = 8. From equation (6), the maximum velocity occurs for
y3 = 0 on a circle with a radius of py, = 271/2 a. The kinematic viscosity coef-
ficient is taken to be 0.15 x 10~% m? - s71. The starting maximum velocity of
the different-sized turbules is assumed to vary according to the (1/3)
power rule applied to the size ratio. The critical Reynolds number for
boundary layer flow with zero pressure gradient is given [7] as about 600,
indicating the value when the flow becomes unstable. The sizes in the table
cover a Reynolds number range spanning this value.

Other valuable information is provided in table 2, including data on total
kinetic energy and the pressure differential Ap at the origin, which is calcu-
lated from the following relationship to the velocity in the y; -y plane:

rdp = pG/ryrdr 1 = Vi + V3
= 2_10
ap(c) = 2[dru(r,0,0)/r = a2 P\, (35)
0 4(g° + 4vt)
Table 1. Turbule decay data.
Characteristic Maximum  Radiusfor  Angular Decay Relative Half- Enstrophy int.,
size, a velocity, v, maximum, p, velocity, constant, half- time, 71 /7 €W, 11/2)
(m) (m-s7) (m) Q K time, t1/2 () (m3- 572
™
1.04 x 10 1.62x 10 732x10°1  1.63x10! 858x107 930x10* 571x10°  3.10x10°

3.33x 107! 1.11x 10 236x 1071 347x10! 3.89x10% 205x10% 591x102 6.19 x 10!
1.07 x 1071 758%10"1  7.58x102 740x10! 1.77x10°5 452x10° 6.12x10! 9.35x 10
3.45x% 1072 520x10°7  244x102 158x102 801x10° 997x102 633x10 1.41x10
1.11 x 1072 356x10°1  784x103 335x102 3.63x10% 220x102 6.55x107! 1.79 x 1071
357 %1073 244x10°1  252x10°3 7.14x102 165x103 485x10' 678x102  1.79x 107!
1.15x 103 167x10"1  812x10% 152x103 748x103 1.07x100 7.02x103  1.79x107!

Note: v=1.50 x10°°m? - sTand K t1) = 0.079877.




The maximum pressure differential (in the largest turbule) is about 86 Pa,
compared to the nominal atmospheric pressure of 101,000 Pa. These pres-
sure data confirm that the constant density assumption is, essentially,
valid.

A comparison between the decay time of this theory and the decay time
predicted by Kolmogorov’s theory is instructive. The relation from which
the latter time may be calculated is as follows:

TK ~ (512/8)1/3 . (36)

In equation (36), € is the energy-decay rate per unit mass. A typical value
[8] for it is € = 1073 m? - s73. Table 3 contains the relative comparative data.

From table 3, we see that the comparable times occur when the size is
around 1 cm. The theory of this report shows a steeper decline for smaller
sizes than Kolmogorov’s prediction, suggesting that the present theory
might be useful for analyzing the turbule interaction in this region. For
example, consider two turbules with initial velocity distributions similar in
form to that considered in the table, separated by a suitable distance. The
only terms in equation (11) initially present would be the interaction terms,
and the decay (or growth) of the interaction could prove to be very
interesting.

Table 2. Ancillary turbule data.

Characteristic Maximum Radius for Angular Kinetic Half-kin. Center Half-center
size, a velocity, v, maximum, p,  velocity, energy, energy pressure pressure
(m) (m-s1) (m) Q w W12 Ap Ap1)2
s 0)] )] (Pa) (Pa)
1.04x 10 1.62% 10 732x101  1.63x10!  1.88x102  9.41x10! 8.62x 10! 2.84x 10!
333x 107! 1.11x 10 236x1071 347x10'  294x10 1.79 % 10 405%x10! 1.33x10!
1.07 x 107! 758x 10"  758x102 7.40x10! 460x102 281x102 190x10! 6.27x10
3.45x 1072 520x10~! 244x102 158x102 720x10% 439x10% 892x10 294x10
1.11 x 1072 356%x10~1  7.84x103 335x102 1.13x10° 6.86x10° 419x10 1.38x10
357 x 1073 244x 1071 252x103  7.14x102  176x107 1.07x107 197x10 6.49x107!

1.15%x 1073 1.67x10°1  812x10% 152x103 275x10°% 1.68x107°

924 x 107! 3.05x1072

po=1.01x105Pa p=1.21kg-m.

Table 3. Decay time comparison with Kolmogorov prediction.

a (m) 1.04x10 333x107 1.07x10! 345x102 111x102 357x10°% 1.15x1073
K (s) 1.03x10! 480x10 225x10 106x10  498x10! 234x10! 1.10x107}
T2(8)  571x103 591x102 612x10' 633x10  655x1071 678x102 7.02x107
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Appendix A.—Applicable Fourier Transform Theory

Fourier transform (FT) theory was used in section 4 of the main report to
solve the equation resulting from forming the dot product of the vorticity
and equation (3). The applicable theory is outlined in this appendix, along
with the notation employed.

The FT of function g(y) of variable y to variable fis defined as follows:

Figw)fl = Gf) = [ dygy) explify) . (A1)

00

The inverse FT (IFT) of function G(f") of variable f” to variable y” is defined
as follows:

FUGU) ¥} = 8) = @0 [ df G expl-if'y) . (a2)

The Dirac delta function, the symbol for which is 8(y), and its FT are of
considerable importance. 8(y) is defined by the limiting process recorded
below:

1
S(y) = 1 = - < < =
(y) Jim (A) A/2 <y <A/2=0

=0; y <-A/2o0r A/2 <y -

(A-3)

The integral of 8(y) is, therefore, unity. The FT of 8(y) is the following:

A/2

F60)) = [ay s explj f) = Jim (5] | dy explify)=
—oo ~A/2

i |SPUDT o 2sinag/2)] g (A
A=0 ]Af A->0 Af

The FT of 8(y) is, therefore, a constant; i.e., it has a uniform spectrum. The
IFT of 1, then, recovers the delta function

-A//2

FHY = n)” [ df exp(-jfy) = 8 | (A5)

When this integral construction is encountered, substitution of a suitable
delta function is appropriate.

The next few expressions define the convolution integral, which is useful
when dealing with the product of two functions.

fy) = gyh(y)

FUW).f) = Ff) = [ dygehy)exp(ify) - (A-6)
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Appendix A

In equation (A-6), f(y) is defined as the product of the functions g(y) and
h(y). The FT of f(y) is defined the standard way. To develop the convolution
integral, g(y) and h(y) are expressed in terms of the IFT of their transforms
G(f) and H(f), as in

oo oo

() = [ dy @) [dfG(f)expl-jf y)@a)” [ df"H("exp(-jf p)exp(ify)

14

—o0 —o0

o0

=@ay? [ af () [ df HF) [ dy explGy)(f = £ = £

—00

=@r)” [dfG(f) [ df " HENS(F - f - f) (A7)

o0

=@n)* [dfGIH( - f) = @7 GHTH( -

—eo

The last line of equation (A-7) defines the convolution integral. The right-
most member of the last line shows how the integral is sometimes repre-
sented. The convolution integral is unchanged by interchange of the func-
tional dependencies between G and H.

The three-dimensional FT of function h(x) of vector variable x to vector
variable q is defined as

Fih,q = [ [ [@rPhoeeisx) = He) . (as)

—00 =00 =00

The IFT of function H(g") of vector variable g” to vector variable x” is shown
as

FUH@)x) = o [ [ [@x)YH@) expl-jgx) = hx) (A-9)

—es —o0 —o0

The FT of the partial derivative of a function (provided g(y) approaches
zero sufficiently rapidly at large y) is

@(%g(y),fj = -jfG(f) . (A-10)

Other notation conventions were included in the text of this report.




Appendix B.—Equation Solution Procedure

The Fourier transform (FT) shown in equation (22) of this report, is repro-
duced here in the equation below.

8:} T T(dq’fcz(q’,t)cl(q - q,1) = —quj T T(dq’)aCl(q',t)Cl(q - g+

2Kk [ | [@qyia)a, - HIc@.nciq - 4.0
LA AR (B-D)

[ | [@gye.:+ ka: - 2K@)a, - a)lciq.nC:ia - 4.1) = 0.

—00  —o0

The solution to equation (B-1) is carried out in equation (B-2), as well as
conversion back into the space domain.

To ensure that the integral in the second line of equation (B-1) is zero, let
the integrand be zero. Temporarily indicating the vorticity product on the
right as the function P(g, 47, t), the Laplace transform (LT) of the integrand
may be calculated as

L{P(q.q9 ) = 0q.9",5) = JdtP(q,q’,t)exP(—st)
0

[0 + K(q,)" - 2K(g/)(q; - 9)IP(q.q°,t) = 0
[S + K(q1)2 - 2K(‘71’)(q, - qi’)]@(q/q’,s) = P(‘LQ’,O)
) P(4,9°,0) (B-2)

[s + K(q,) - 2K(9))(q; - 4/)]

P(q,9",t) = P(q,9",0)exp{-K[(q,)* - 2(g))(q; - )]t}

The first line in equation B-2 defines the LT. The second line is the inte-
grand from equation (B-1). The third and fifth lines of the equation are
standard LT [6]. The left-hand side of the last line of the equation, minus

the right-hand side may now be substituted for the integrand of the last
line of equation (B-1), as in

§(q,9°,5)

[ [ Jurra@.oca- a0 =

—00 —00 —00

[ | [@ayca,0ciq - ¢,0expl-Ki@,) - 26)@ - 4)1).

.00 ~00 —00

(B-3)
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The next step involves the IFT of equation (23). Addressing the left-hand
side, the IFT integration will be applied, and the integral expression for the
C’s will be substituted, as in

sLEs) = @ | | [@nrencian | | J@raaoca- ¢

—00 «~00 —00 —60 @0 —00

= (27r)’3j T T(dq)3e><p(-jq,»xf)j ] I(dq’f

—60 =00 —00 —00 —00 —00

I I I(dx,)SeXP(]’qz"xil)Cl(x',f)

—00 —00 —00

]‘; T T(dx”)3exp[j(qj._ g.)x{1c1(x”,t)

—00 =00 —00

e | | Jary| | [ @ epigzec.

—00 00 —00 —00 ~00 —00

T ]: T (dx”) expl-jgix{1c:(x”, 1)

—00 —00 —00

T ]'; T (dq)sexp[j qg.(x - x))]

—e0 =00 —00

T f TWPT J T(dx')3exp(f‘7{x{)cl(x'rf)eXp[—J'q{x,-]m(x,f)

—00 —00 ~—o0 —00 —00 —o0

T I T(dx')Bcl(x’,t)cl(x,t)T T T(dQ')BEXP[]'q{(X{- x)]

27)7 [er(x, DT

The square of the vorticity was defined to be the enstrophy in section 4

(B-4)

e(x,t) = [c;(x,H)]

Fle(x,0)) = Eq.t) = @n)° [ | [W@ayciq.nc,q- 4.
eoe . (B-5)
Eqh =@ [ | [@q)yPa.q.n.

—00 =60 ~00
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The IFT of the last expression in equation (B-3) may now be written as
ei(x,t) = T T T(dQ)3€XP(_jini) T T T(dq’)3C1(q’,0)C1(q - q°,0)
o exp{-K[(4,)’ —_MZ(_;’)Eq,- ol

= T ]: ]:(dQ')acl(q',O)exp[K(q{)zt]

—00 —00

(B-6)

[ | [@arcia- q,0expl-KI@,) - 24/4]Hexp(~jd;x)-

—00 ~00 =00

Replacing Ci(g,4°,0) from equation (15) for all components produces the
following equation:

et = @/0 [ [ [@q)y e expla))/ dlexpl-K(g))* tlexp(-jg; x)

—-00 —00 —00

[ [ [@ayr@ - apa, - a)expl-a, - 4)*/4]

~00 =00 ~—00

exp[-K(q; — g;)*tlexp[-j(9, - 4))xi]

ex(x,t) = (n°/ 4)J J I (dq°)% 39, expl=(q,)? / 41exp[-K(g; )’ texp(~jq; x:)

—00 w00 =00

[ | J@ara. - aa, - a)expl-@, - 4)/4]

exp[-K(q, - 4;)*tlexp[-j(q; - 4))xi]
- = e B-7
es(x,t) = (7°/4) J I f dq)’[(4;)* + (4;)expl~(g;)*/ 4] &7
exp[-K(g;)* tlexp(-fq; x:)

[ | [w@arta - a7+ @ - a)lexpl-q; - 4)%/4]

expl-K(q, - 4;)*tlexpl-j(q; - 4))xil-

The right-most integrals are IFTs and produce functions that have no 4
dependence. The notation has been simplified by setting L =1/4 + Kt.
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et = (/9 [ [ [@g)q/a;expl=a)?/ 4expl-K(g))’ tlexp(-ja; x:)

—00 —00 —00

(—X1X39XP[“X%/(4L)]j

32L7/27%/2

exwt) = (/9 | [ [ @aq) g, expl-(g))/ Alexpl-K(g;)* tlexp(~jd; x)

-0 —00 =00

(—X2X3€Xp["3fi2/(4L)])

321723/

(B-8)
esxt) = /9 [ [ [@qyla;) + @) lexpla)/4)

—00 w00 —00

, . [@L = xf - xexpl-xf/(4L)]
exp[-K(q; )*t]exp(-jq; xs)( = ” Lﬁz/z xf/z - )

The integrals in equation (B-8) are the same as the right-most integrals of
equation (B-7), so that the result simply squares the ( ) brackets.

4expl[-2x?/(4L)]
Ly

e(x,t) = ( )[(xxxa)z + (x2x3)” + (4L - xf — B)] . (B-9)

Equation (B-9) is the formal result of this investigation, and was reported
in section 4 as equation (24).
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Appendix C.—Details of the Confirmation Process

The purpose of this appendix is to record the details confirming that the
enstrophy expression, equation (24) of the main report, is a solution of the
transport equation for instantaneous enstrophy, equation (27). In section 5,
trial vorticity and trial velocity functions (denoted by bold letters ¢ and v,
respectively) were inferred from equation (24) and are reproduced here in
equations (C-1) and (C-2).

.- (ZexP[—x,?/ (4L)]

ary’? J[fclxlm + Raxoxs + %3(4L -xf -x3)] . (C-1)

v = [1/(4L)*/ (= #1x2 + F2x1)expl-x?/(4L)] - (C-2)

I showed in section 5 that the divergence of ¢ and v are zero—a condition
established early in this investigation. The confirmation process that began
in section 5 identified a function A¢c made up of the three terms of equation
(27). These three terms were separately identified in equation (31), which is
reproduced here as equation (C-3).

Ac = ac - B - Ke,

Qc = Cjath

B. = cjsj (C-3)
P = Cj(ai)ZC,w

Expansion of function ac is formulated in equation (C-4).

c10¢c1 + C20¢c2 + €30¢C3

2 x1xsexpl=x2/(AL) ALY/ 23,{2 x1 xsexpl-x? /(4L))(4L) 7 /%)

+ 2xpxsexp[-x?/(4L)J(AL) 7 /2 3,{2 xo xsexp[-x?/(41))(4L) 7/}
+2(4L - x} - x}exp[-x?/(4L)(4L)7"?

3{2(4L - x} - xB)expl-x?/(4L))(4L)7/?}.

(C-4)

Taking the time derivatives and simplifying gives the following:

ac = [2x1x3)%expl-x?/(AL)J(AL)7/2{(4K)exp[-x? / (4L))(4L)™M/?

[x? = (7/2)@L)]} + [2x2x3F expl-x7 /(4L))AL)”/*{(4K)
exp[-x?/(4L)JALY ™ 2 [x? - (7/2)AL)]} + 4(4L - xi - x3)
expl-x?/(4L)](4L)7/? {(4K)exp[-x? /(4L)I(4L)™/*
[(-7/2)4L - 2} - BD)AL) +xP(4L - xf - x3) + (4L)’)} .

(C-5)
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Even further simplification yields the following:

o = (8K)exp[-2x2/(4L)AL)Y*{x3(x} + xP[2x? - 7(4L)]
+2x74L - x} - K37 - 74L)4L - « ~ K3’ (C-6)
+2(4LY(4L - xf - )}

Expansion of function ¢¢ is shown in equation (C-7):

¢. = adiar + c207c2 + c3dics
= 2x1xsexp[-x}/(AL)I(4L)7/* 822 ;1 xsexpl-xF /(4L)](4L) %)
+ 2y, x3expl-x?/(AL)(AL) 72 0H{2 x, xsexpl-x7 / (4L)I(4LY7"?)
+2(4L - ¥} - xB)expl-x?/(4L)J(4L)7"?
x H2(4L — x} - x}exp[-x/(4L))(4L)7"?).

Breaking equation (C-7) into parts and performing the differentiations
gives the following three equations.

(C-7)

¢4 = 4xixiexpl-x?/(4L)1(4L)7 o} {xsexp[-x7 /(41)]}
+ 4 x3 x3exp[-x?/(AL))(AL )7 o} {exp[-x7 /(4L)])
+4(4L ~ x} - xPexpl-x?/(@4L)4L)7 a1
(4L - x? - xPexp[-x/(4L)]}
= 8x3x}[2x3/(4L) - 3]exp[-2x?/(4L)J4L)"
+8x3x3[2x3/(4L) — 1lexp[-2x?/(4L)J(4L)™
+84L - x}— IBL - 3 - x32x/@AL) - 1) + 2xi]
exp[-2x?/(4L)J(4L)*.

(C-8)

@ = 4lxixs]Pexpl-x?/(4L)J(4L)7 33 fexpl-x?/(4L)])
+ 4y, x3expl-x?/(4L)1(4L)7 93 {x2expl-xF / (4L)]}
+4(4L - x} - x3exp[-x?/(4L)J(4L)7 33
(4L - x} - xd)expl-x?/(4L)]}
= 8lxyxsP[2x3/(4L) - 1]exp[-2x?/(4L)}(4L)™®
+8[x, %52 [223/(4L) — 3lexp[-2x?/(4L))(4L)™
+8(4L — x3 - 1IBL - 2} - x3)(2x3/(AL) - 1) + 2x3]
exp[-2x?/(4L)1(4L).

(C-9)
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= 4x2xsexpl-x?/(AL)J(4L)7 93{xsexpl-xf /(4L)])

+ 4 x3 xsexpl-x?/(4L)J(4L)7 95 {xsexp[-x7 /(41)]}

+4(4L - x3 - xD)expl-x?/(4L)J(4L)7 33

{4L - x} - x3)expl-xF/(4L)])

8x2x3[2x3/(4L) - 3lexpl-2x?/(4L)J4L)” (C-10)
+8x3x312x3/(4L) - 3lexp[-2x?/(4L))(4L)"

+82x3/(41) - 1AL - x} - x3)’expl-2x}/(AL)JAL)™.

Summing up the expressions in equations (C-8), (C-9), and (C-10) and sim-
plifying the results achieves

¢, = 8x3x3[2x3/(4L) - 3lexp[-2x?/(4L)J(4L)*

+8x3x3[2x3/(4L) - 1]exp[-2x?/(4L)I(4L)"

+84L - x2 — XL - x} - x3)Q2x3/(4L) - 1) + 2xi]
exp[-2x2/(41))(4L)™® +8[x1xs ) [2x3/(4L) - 1]
exp[-2x2/(4L))(AL)™® +8[x2x3 P [2x3/(4L) ~ 3]
exp[-2x?/(4L)J(4L) 2 +8(4L — x} — xPIBL - xf - 23)

2x3/(4L) - 1) + 2x3lexp[-2x?/(4L)J4L)™ (C-11)
+8x2x3[2x3/(4L) - 3lexp[-2x?/(4L))(4L)™

+8x3x3[2x3/(4L) - 3lexp[-2x}/(4L))4L)”

+8[2x3/(4L) - 1J4L - 23 - x3)*exp[-2x}/(4L)J4L)™.

Further simplification yields the following equations.

¢, = 8expl[-2x/(4L)JALY {[xsx1 F[2xF - 3(4L)] + [x2xsFl2x} - (4L)]
+(@L - x2 - ¥)[BL - ¥ - xD2x} - (4L)) + 2(4L)x3]
+ [xxsPI2x3 = (AL)]+ [x2x3F[2x3 — 3(4L)]

+(@L - x2 = fDIBL - B - x3)@2x} - (4L)) + 2(4L)x3]

(C-12)
+[axsPl2x3 - 3(4L)] + [xox3Pl2x3 — 3(4L)]
+[2x3 - 4LJ@L - 3 - x3)%).
¢, = 8expl-2x?/AL)ALY {3[x + #Bl2xF - 7(4L)] + 22(4L - 3 - 2B)
~7ALYAL - & - B + 24LPEL - 2 - D). (C13)
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Comparing equation (C-6) with equation (C-13), we see that ac = K ¢¢, 50
they will cancel each other out when they are entered into the Ac
expression.

The second term from equation (C-3) is more conveniently written in vec-
tor notation as

B, = c-[Vx(vxd)]. (C-14)
First calculate the cross product of the velocity and the vorticity:
vxe = —exp[-2x2/(AL)I(ALY /2] 33 x3]xf +3] - (C-15)

Next, find the curl of the expression in equation (C-15), which will be the
function s, as in

s = exp[-2x2 /(ALY Txs[4L - »f = x)[-21x2 + Z2x1l - (C-16)

The function B¢ will then be the dot product of ¢ with the above, or

5 _ (2035 /(L)
< T (4L)19/2

[f10123 + Rox2xs + 234L = xf = )] [-z1x2 + 22x1] = 0.

jxa[‘iL - x2 - x3]
(C-17)

Therefore, the second term is identically zero.
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Appendix D.—Analysis of the Enstrophy Equation
Applied to the Navier-Stokes Equation

In this appendix, the inferred time-dependent velocity field will be applied
to the Navier-Stokes (N-S) equation to determine if it is a solution. The
form of N-S to be used is equation (2), which is reproduced here as equa-

tion (D-1).
_a_u = - [l)Vp - (1/2Vu? + ux(Vxu)
ot p
D-1
+(£]V2u + (5 + l)V(V-u) ) (B-1)
p p 3p
The trial vorticity and velocity field equations are reproduced here from
equation (32).
200a°expl-vyi /(@ + 4vD)]) . «
d(y,T) = [ (az + 4\/‘[)7/2 [ylnyB + y2y2y3 +
7@ + 4ve - yi - )l
Qoa’expl-y;/(a® + 4vo)] e
0 —Ji A ~
u(y,7) = ( (a2 + 4vt)®/? ][_y1y2 + o4l

An expression for the pressure will be required; that expression will be
developed after the form of equation (34) and shall be shown as equation

(D-3).
rdp = pu?/rydr v = Y+

oo

plee, 7) = ply,7) = 2 J dr'w(r’, y,,7)/ 1’

V¥ +y3

2 10
( o ]exm—zy?/m“ av)] (-3

4(a% + 4vt)®
Q% alop

mj‘*x"[‘”?/ @+ 4l

py,T) = plee, T) - L

To carry out the confirmation process, trial expressions will be identified
by bold symbols. Ay will represent equation (D-1) with all the terms
moved to the left-hand side (except for the last term, which is zero because
the divergence of the velocity is zero). If Ay is zero when the velocity ex-
pression of equation (D-2) is substituted, equation (D-2) is a solution to
equation (D-1). Two trial expressions will also be calculated: Aj and Ag.
These functions represent the differently orientationed components of
equation (D-1).If Aj and Az are simultaneously zero, A, will be zero. These
identifications are made in the equation (D-4).

23




Appendix D

A=A +A, A= +B+¢; Ay=a, +B;

@ = (E)V” i [—gﬂﬂ[%%]exp[— 29} /(a? + 4v7)

(a2+4v'r

B,=(1/2)Vu’= {—i‘zﬂi—)g} V{[yf + yf]exp[— 2y} /(a2 +4v r)]}

2(a® +4v7
¢, =uxd=- { (af?ia:l)é exp[—ny /(a2 +4v 1)]
- 9o + G )X [9uays + ooy + 50 + 4ve =i - 43 }

(D-4)
5
@, =d.u=0, ('2__’_%‘17)5—77 {[_ Y2 +92y1]exp[_yi2 /(az + 4"7)]}
a
5

B,=vVia= _vl(z—f’f‘r—fﬂ} VE{- Gy + Gy Jexpl-y2 /(a® + 4ve)}.

a’ +4v

The gradient operation has already been accomplished for e, and no fur-
ther simplification is needed. Next, simplify the §; function:

anl() ) R ~ 2 2
Bl = m {(a + 4VT)[y1y1+ yZyZ]— 2[y1 + yz]

(D-5)
[9,5, + §,Y + 75 yallexpl-2y7/(a® + 4v1)]
The simplify the ¢; function:

_ 2Q3a" 272 /( + 4 ~ 2, 4 2 2
@ = - @+ oy exp[-2y; /(@ + 4vOlly,y,(a® + 4vr— ¥, — V)

A 2 2 2 A 2 2 (D-6)
+y2y2([1 + 4vt - y1 - yz)‘ y3y3(}/1 + yz)]
Find the sum of a1, $1, and ¢:
a1 + By + ¢

_ (Q%awexp[—Zyiz/(a2 + 4vr)]

A1
(D-7)

(a% + 4vr)® ]{[giyi] - @+ WDy, + F,¥,])

In doing so, we find that A; is not zero. Proceed by simplifying the A func-
tion by first expanding ay:

Qoa® . )
T ('(;2_??57)977) [-9,y, + Hyyalexpl-y;/(a® + 4v1)]

@[y - (5/2)@% + 4vr)]

(D-8)
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Finally, expand B 2:

Qod’ . .
B, = —4V(G—2T%£/7)9—/2j 9,9, + ,y,lexpl-y;/(a* + 4v7)]

(D-9)
[y2 - 2(a® + 4v1)]

Comparing equation (D-8) with equation (D-9), we see that A; is not zero,
although the difference has the time dependence of the vorticity, but is in
the opposite direction of the velocity.

Since A1 and A, are each not zero and have different dependence in the
exponential factor, their sums A cannot be zero, and hence equation (D-2)
is not a solution to equation (D-1).
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